
1

2011 HEC-FSIO Workshop
Measurement and Understanding Panel

Accessible and Reliable
Parallel I/O Benchmarking

Xiaosong Ma

North Carolina State University
Joint faculty with Oak Ridge National Lab

2

Benchmarks Needed
•  Benchmarks widely used

–  Processor, compiler, OS: SPEC
–  Parallel computing: LinPack, NAS
–  Database and storage: TPC, SPC, IO-Zone

•  Uses in HEC I/O R&D
–  HPC application developers and users: selecting libraries, I/

O modes, …
–  Supercomputer, parallel file system, or I/O library designers:

evaluating/validating design and implementation
–  HEC system owners: hardware provisioning and

configuration
More helpful with Exascale on its way

3

State of the Art
•  Parallel I/O benchmarks exist

–  Synthetic benchmarks: ROMIO CIO, Tile I/O, IOR …
•  Compact, portable, readable
•  Not capturing complexity/scale of Peta-scale applications

–  Benchmarks derived from applications manually: FLASH
benchmark, S3aSim

•  Time consuming benchmark generation
•  More work to keep up with original application

–  Applications?
•  Complex, large, hard to port
•  Long running
•  Sometimes classified

In scalable I/O and file systems, there are few
generally applicable tools available. Tools and
benchmarks for use by application programmers,
library developers, and file system managers would
be of enormous use for the future.

- Multiagency FSIO Suggested R&D Topics
2005-2009

“Measurement and understanding of system
workload in HEC environment” rated “very
important” in HEC-FSIO Roadmap 2010

4

Our Ongoing HECURA Project
•  BenchMaker: automated extraction of parallel I/O

benchmarks from HPC applications
–  Faithfully re-creates I/O related activities
–  Smaller, portable, and shorter runs
–  Human intelligible
–  Grows with applications

BenchMaker

Instrumented
libraries

 Supercomputer

Data-intensive
parallel apps.

Application trace
(MPI/MPI-IO, counters)

1. Parallel I/O
benchmark

 Mid-size cluster

Parallel
file system

2. Server-side
traces

Client-side Benchmark Generation

5

Main() {
 Read_input(){ …
 MPI_File_read(); …}
 for (i=0; i<MAX_STEP; i++) {
 solve(); //comp. phase
 update(); {//comm. Phase

MPI_Bcast(); …}
 write_output(i, …) { …
 MPI_File_write_all();

…}
 }
 finalize();
}

Main() {
 initialize’();
 MPI_File_read();
 for (i=0; i<MAX_STEP; i++) {
 compute’();
 communicate’();

 MPI_File_write_all();
 }

 finalize’();
}

6

Benchmark Generation Progress
•  ScalaIOTrace

–  On-the-fly I/O trace
 compression [PDSW09]

–  MPI-IO and POSIX
–  PRSD (Power

 Regular Section Descriptors)
•  Loops -> PRSDs (e.g., <100, MPI_Bcast,
MPI_File_write_all>)

•  Histogram-based trace collection and replay
–  Retrieving and compressing statistics on event participation

and timing data
–  Deadlock free replay

•  Code generation
–  Revised trace replayer
–  PRSDs back to loops

Benchmark Generation by Slicing
•  Alternative approach to trace-based benchmark

extraction
–  Based on dependence analysis
–  Code-to-code benchmark generation possible

•  Justification
–  Payload content unimportant for I/O benchmarks
–  Key HPC I/O operation parameters not involved in main

computation steps
–  Potential “plan A”

•  Current progress (in collaboration with Tsinghua
University, China)
–  Able to slice MPI-IO calls from applications
–  Intermediate to source code transformation
–  Adding POSIX and netCDF support

7

Next Step: Establishing Base Application Set
•  Applications included in plan

–  CCSM, POP, Grapes
–  GTC, S3D, FLASH
–  mpiBLAST

•  How complete and representative is the set?
–  Domains

•  Numerical simulations, biological database search, graph,
visualization

–  I/O behavior
•  File access: shared, per-process file
•  I/O libraries: MPI-IO, netCDF/HDF5, ADIOS, POSIX
•  I/O operations: write-intensive, read-intensive
•  I/O patterns: sequential, random

–  Others? Suggestion welcome!

8

Reliable and Reproducible I/O
Performance Measurement
•  Can we trust numbers obtained on supercomputers?
•  Shared nature of large-scale HEC platforms

–  Multiple jobs execute simultaneously, plus interactive accesses
–  I/O system shared between co-running jobs
–  Dedicated access to entire machine nearly impossible
–  Result: huge variance in observed I/O performance

9

1
2 1577.988
3 56.539 46.868 2160.323

Situation Worse with Exa-scale Machines

10

•  Million-way parallelism, higher pressure on shared
storage systems
–  Example

•  Large number of concurrent metadata operations
•  Max time measured with 1024 process concurrently opening

files on Jaguar: varying from 0.64 to 167 seconds!

•  Larger gap in scale between production systems and
development clusters
–  Private, local clusters less capable of demonstrating I/O

performance for production runs

Ongoing Research on I/O Performance
Variance Control
•  Performance noise removal

–  Extracting application’s internal behavior from multiple
unreliable trial measurements?

•  Challenging due to lack of references
•  May be resource heavy (many runs needed)

•  Devising approaches for performance variance
reduction
–  Most large-scale parallel applications perform I/O

periodically
•  Typical SciDAC apps: one checkpoint per hour, result data

output frequency ranging from per 10 minutes to per hour
–  Possible to coordinate multiple applications’ periodic I/O

activities through I/O middleware?

11

Thank You!

12

13

Regenerating What’s Between I/O Phases
•  Computation and communication needed

–  But only enough to retain impact on I/O
•  Memory footprint and access pattern
•  I/O intensiveness and overlap behavior

•  Creating realistic computation/communication
workload
–  Combining micro computation kernels
–  Memory behavior tracing

•  Benchmark users allowed to configure levels of
computation contents
–  High, low, none …

14

Making Benchmarks Parametric
•  Adjustable computation modes

–  Problem size
–  Number of processes

•  Adjustable I/O modes
–  I/O grouping
–  Buffering options (memory and local storage)
–  On-disk data layout
–  Dedicated I/O processor/core per node
–  I/O frequency

15

Evaluation and Suite Composition
•  Benchmark fidelity evaluation

–  Goal: ressembling base application

•  Building benchmark suite
–  Goal: completeness and non-redundancy

•  Common challenge: how to quantify difference
between executions

Server-side Trace Generation
•  Dilemma for server-side designers

–  Large machines do not allow privileged accesses
•  Or trace collection

–  Small clusters do not have enough nodes as clients
•  Creating server-side traces from benchmarks

–  Translate 10,000-client benchmark into 100-server traces
–  Extrapolating client->server mappings from mid-sized runs

16

17

Dissemination and Acknowledgment
•  Plan to release

–  Open source tool
–  Prototype benchmarks

•  Call for community participation
–  Requirement from FSIO researchers
–  Applications
–  Benchmark test users

•  We appreciate support and input from
–  NSF
–  Rajeev Thakur and Rob Ross (ANL), Scott Klasky, Phil Roth,

and Galen Shipman (ORNL)

